Technology Overview

In recent years, the human genome has been sequenced and the biotechnology industry needs new analytical tools and solutions to study the life sciences. The miniaturization of bioanalytical systems helps to reduce costs and time to perform experiments in order to streamline and accelerate laboratory assays. Microfluidics can also be used to speed up and simplify sample preparation steps in genomic and proteomic research and to offer high throughput, low cost versions of traditional research methods. The future micro- and nanotechnology for bioanalytical systems has become an increasingly important method for genomic and proteomic applications, as well as drug discovery and development research.

Nanobiotechnology is the application of nanotechnology and micro/nanofluidics to the life sciences. This research field comprises two approaches. One is the application of nano-scaled tools to biological systems and the other is the use of biological systems as templates in the development of novel nano-scaled products. Nanobiotechnology offers new opportunities to transform broad areas of science and engineering by combining nanotechnology with biotechnology. It can not only play a complementary role in both of the afore-mentioned technology areas, but also create novel synergy effects. At present, the development of a robust, sensitive and high-throughput lab-on-a-chip is one of the major issues in the area of nanobiotechnology. The biological detection system for nanoscale devices should be provided for simpler, one-step and homogeneous assays. The assay platform for lab-on-a-chip also ensures compatibility with miniaturization. A microfluidic system for biological sample processing offers many potential advantages over a conventional assay platform, including small volumes, short assay time, multiple assay and automation.


"Pushbutton-activated microfluidic cartridge as a user-friendly sample preparation tool for diagnostics
,"
Biomicrofluidics, 15 (4), 041302 (2021).  Invited Perspective Article

"Towards practical sample preparation in point-of-care testing: User-friendly microfluidic devices," Lab Chip, 20 (7), 1191-1203 (2020).  Critical Review 

"Design criteria and standardization of a microfluidic cell culture system for investigating cellular migration," J. Micromech. Microeng.29 (4), 043003 (2019).   Invited Topical Review 

"Inertial microfluidics-based cell sorting," BioChip J., 12 (4), 257-267 (2018). Review

"Á¾À̸¦ »ç¿ëÇÑ ¹ÙÀÌ¿À¼¾¼­ (in Korean)", °úÇаú ±â¼ú 2017³â 8¿ùÈ£ ebook   Review

"User-friendly 3D bioassays with cell-containing hydrogel modules: narrowing the gap between the microfluidic bioassays and the clinical end-user¡¯s needs," Lab Chip, 15 (11): 2379-2387 (2015).  Frontier Article / Lab on a Chip: Insights Issue   OPEN ACCESS  

"Editorial: Nanobio versus Bionano - what¡¯s in a name?," Biotechnol. J., 8 (2): 158-159 (2013).  Editorial in the Special Issue of Biotechnology Journal

"Optoelectrofluidic platforms for chemistry and biology," Lab Chip, 11 (1): 33-47 (2011). Critical Review

"10th Anniversary Issue: Korea," Lab Chip, 11 (1), 23-24 (2011). Editorial

"Lab-on-a-chip technology for integrative bioengineering," IEEE NANO 2010, KINTEX, Seoul, KOREA (August 17-20, 2010).   Review

"±¤Àü±âÀ¯Ã¼¿ªÇÐ(Optoelectrofluidics)ÀÇ ¹ÙÀÌ¿ÀÀÀ¿ë (in Korean)" , Àü±âÀüÀÚÀç·á, 22 (5): 28-37 (2009).   Review

YouTube.jpg YouTube Video related to research article in Lab on a chip, "Rapid and selective concentration of microparticles in an optoelectrofluidic platform Read article" 

"À¯Àü¿µµ¿(dielectrophoresis)À» ÀÌ¿ëÇÑ ¹Ì¼¼À¯Ã¼Á¦¾î ±â¼ú (in Korean)" , Çѱ¹¹ÙÀÌ¿ÀĨÇÐȸ ¼Ò½ÄÁö, 2006³â 11¿ù 2È£.  Review

"Microfluidic cell culture systems for cellular analysis," , Biochip J., 1 (1): 17-27 (2007).  Mini Review

"Microfluidic Devices - Cell Separation Technology," , Asia Pacific Biotech News (APBN), 9 (21): 1135-1146 (2005).   Review

"BioNano/MEMSÀÇ ±â¼úµ¿Çâ (in Korean)," , ÀüÀÚ°øÇÐȸÁö, 32 (8): 62-68 (2005)   Review

"BioNano/Micro System in Nanobiotechnology," , BioSystems Review, 1 (1): 59-67 (2005)   Review

"³ª³ë¹ÙÀÌ¿À°øÇÐÀÇ À̷аú ÀÀ¿ë (in Korean)," Çѱ¹»ý¸í°øÇבּ¸¿ø ¹ÙÀÌ¿À¸Å°ÅÁø 2004³â 8¿ùÈ£ - (update 2004.08.09).  Review

"Principles and Applications of Nanobiotechnology," (update 2004.07.20).

"´ëÀüÁö¿ª ¹ÙÀÌ¿ÀÀ¶ÇÕ±â¼ú ·Îµå¸Ê- TRM º¸°í¼­ (in Korean)," , ´ëÀüÀü·«»ê¾÷±âȹ´Ü - (2003. 12. 30). 

"Miniaturized Bioanalytical Systems for Biotech Industry," (update 2003.04.25).

"e-Çコ »ê¾÷°ú ¹ÙÀÌ¿ÀĨ (in Korean)," Á¤º¸Åë½Å¿¬±¸ÁøÈï, 4(4): 51-54. (2002.12).

"Bioanalytical Applications of Nanobiotechnology,"  (update 2002.05.01).

"Protein Chip Technology (in Korean)," - ´Ü¹éÁúĨ, "2001 ½Å±â¼úµ¿ÇâÁ¶»ç º¸°í¼­ - ¹ÙÀÌ¿ÀĨ," È­ÇоàÇ°ºÐ¾ß Á¦3±Ç, pp. 32-64,  Æ¯Çãû (2001.12.07).

"Technology Overview of Biosensor (in Korean),"  - The Magazine of the IEEK, 28 (10):  56-66 (2001. 10. 25).  Review

"Technology Overview of Biochip (in Korean),"  - The Proceedings of the KIEE, 49(2): 17-23 (2000. 2. 25).  Review