Department of BioSystems Korea Advanced Institute of Science and Technology

BiS 771 Spring 2004

Prof. Je-Kyun Park Room 801, E16 Building jekyun@kaist.ac.kr (Tel: 4315) Room 220, E16 Building Tue, Thu 10:30-12:00 http://nanobio.kaist.ac.kr

BiS 771 Nanobiotechnology

Synopsis

This course deals with the most up-to-date application of nanotechnology to the life sciences. Lecture is focused on the nanofabrication. This course also covers the following discussion topics in the field of nanobiotechnology: one is the application of nano-scaled tools to biological systems and the other is the use of biological systems as templates in the development of novel nano-scaled products. Special applications include nanomedicine, nanobiosensor, nanofluidics, and nano-bio devices and systems. Each student is required to select one application topic and lead one discussion session.

Credit

3 units (3:0:3)

Prerequisite

Graduate standing is required. Recommended prerequisite courses include BiS 521, BiS 523, BiS 571, or equivalent.

Grading

Homeworks 20%, Midterm Exam. 30% Presentation & Term Paper 50%

Office Hours

Tue, Thu 13:00-14:30

Teaching Assistant

Joo H. Kang (kohinoor@kaist.ac.kr, Tel: 5355, Room 802, E16)

Textbook

Lecture Notes and Paper Selections

References

- 1. Scientific American, Volume 285, Number 3 (September 2001)
- 2. Nature Biotechnology, Volume 21, Number 10 (October 2003)
- 3. Ratner, M. Ratener, D. (2003) Nanotechnology A Gentle Introduction to the Next Big Idea, Prentice Hall, ISBN: 0131014005

Department of BioSystems Korea Advanced Institute of Science and Technology

BiS 771 Nanobiotechnology

Prof. Je-Kyun Park

Spring 2004

Lecture Schedule

Week	Topics	Contents
1	Introduction	Course Outline
2		Biological Problems
3	Technology: Nanofabrications	MEMS/ NEMS
4		Atomic Force Microscopy (AFM)
5		Self-assembled Monolayers/ Dip-Pen Nanolithography
6		Soft Lithography/ PDMS Molding
7		Nanoparticles, Nanowires, Nanotubes
8	Midterm Exam.	
9	Application I: Nanomedicine,	Nanocrystals in Biological Detection
10	Nanobiosensor,	Electrochemical DNA Sensors
11	Nanofluidics	Integrated Nanoliter Systems
12	Application II: Nano-Bio Devices & Systems	Fabrication of Novel Biomaterials through Molecular Self-assembly
13		Small-scale Systems for <i>in vivo</i> Drug Delivery
14		Future Nanomachine
15	Perspective	Commercializing Nanobiotechnology
16	Summary	