Geometric effect of the hydrogel grid structure on in vitro formation of homogeneous MIN6 cell clusters

Chae Yun Bae,a Mun-kyeong Min,b Hail Kim*b and Je-Kyun Park*a

A microstructure-based hydrogel was employed to study the relationship between spatial specificity and cellular behavior, including cell fate, proliferation, morphology, and insulin secretion in pancreatic β-cells. To effectively form homogeneous cell clusters in vitro, we made cell-containing hydrogel membrane constructs with an adapted grid structure based on a hexagonal micropattern. Homogeneous cell clusters (average diameter: 83.6 ± 14.2 μm) of pancreatic insulinoma (MIN6) cells were spontaneously generated in the floating hydrogel membrane constructs, including a hexagonal grid structure (size of cavity: 100 μm, interval between cavities: 30 μm). Interestingly, 3D clustering of MIN6 cells mimicking the structure of pancreatic islets was coalesced into a merged aggregate attaching to each hexagonal cavity of the hydrogel grid structure. The fate and insulin secretion of homogeneous cell clusters in the hydrogel grid structure were also assessed. The results of these designable hydrogel–cell membrane constructs suggest that facultative in vitro β-cell proliferation and maintenance can be applied to biofunctional assessments.

Introduction

Hydrogels have been widely used as scaffolds to support structural integrity1 for stem cell differentiation2 or cell aggregation,3 and to encapsulate or deliver cells for tissue engineering4 and transplantation.5 However, enhancement of cellular behavior and proliferation was restricted via the modification of hydrogel conjugation3,6,7 or the addition of an extracellular matrix (ECM) such as gelatin2 and collagen.5 Even though the modification of hydrogel conjugation or the addition of ECM was known to improve the cellular function to facilitate cell–ECM interaction or to adjust pore sizes of hydrogel, geometric control of hydrogel constructs could also be essential to understand cellular growth or function for effective cell–cell contacts and complicated tissue reconstruction of a defined geometry of the limit set.

The use of micro-scale technology has recently increased and has provided further insight into the relationship between physicochemical properties and biological cell behavior. Above all, geometric control of the surrounding micro-environment in cells and tissues is widely recognized to be a critical regulator for understanding the transient role of constructs in cell proliferation and multicellular generation for tissue reconstruction with relevance to the regulation of fate,7,8 differentiation9–11 and morphogenesis.12–14 However, micro-scaled geometric control of hydrogel constructs surrounding cells was extremely complicated because of the fabrication process.6,15,16 Encapsulated cells were immensely influenced by not only pore sizes of the hydrogel but also the surrounding geometry of the scaffold due to difference in mechanical stress and limitation of diffusion length. Therefore, a well-designed geometric condition of hydrogel constructs would stand a better chance of enhancing cell proliferation and multicellular generation for tissue reconstruction without any conjugal modification or additional ECM in hydrogel.

Insulin-producing pancreatic β-cells are typically formed with other endocrine cells in a spherical multicellular group, called the islet of Langerhans, which grows to approximately 100–200 μm in diameter in most species. When they were dissociated into single cells, however, their function was reduced. A similar phenomenon has also been observed for pancreatic insulinoma (MIN6) cells.17,18 Although some conventional aggregation techniques, such as simple shaking19 and hanging drop,20 have been demonstrated for generation of multicellular units, physical size could hardly be controllable. An array of micro-sized-well structures was used to rapidly achieve homogeneity of generated aggregation.5,21 Nevertheless, necrosis of aggregated cells would be usually observed

a Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea. E-mail: jekyun@kaist.ac.kr; Fax: +82 42 350 4310; Tel: +82 42 350 4315
b Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea. E-mail: hailkim@kaist.edu; Fax: +82 42 350 4243; Tel: +82 42 350 4240
at the center of the bigger clusters within a few days when multicellular clusters were generated. Moreover, natural formation of a multicellular cluster was not verifiable using rapidly proliferative cells even though it has been suggested that multiple cells could be simply gathered. To implement an in-depth research study of cellular growth and maintenance in vitro for longer periods of time, we need to spontaneously generate multicellular clusters using dispersed single cells which have the capability of responding to the surrounding environmental factors such as physical confinement and chemical elements.

In this paper, we modified a previously reported facile fabrication method of mesoscopic free-standing hydrogel structures\(^\text{22,23}\) to construct in vivo-like 3D cellular clusters with a particular surrounding microenvironment geometry. To demonstrate the geometric effect of hydrogel constructs in cell proliferation and maintenance, MIN6 cells were examined for multicellular clustering in a geometrically confined hydrogel scaffold without any material modification. Here, we suggested cell-embedded hydrogel membrane constructs, including a hexagonal grid structure with a certain type of micropattern, in consideration of chemical diffusion and cellular interactions. Homogeneous MIN6 cell clusters were generated spontaneously at the cavities of the hexagonal grid structure for 15 culture days. Furthermore, multicellular clusters, generated from the membrane-based floating hydrogel constructs including a hexagonal grid structure, were assessed as regards their viability and insulin secretion.

Experimental

Preparation of the hydrogel microstructure

Free-standing micropatterned hydrogel constructs were fabricated using a previously reported method\(^\text{22,23}\) with some modifications. To construct a uniform hexagonal grid structure, a poly(dimethylsiloxane) (PDMS) replica was fabricated via two-step lithography. Then, the PDMS replica molds were sterilized overnight by germicidal ultraviolet irradiation on a clean bench. Sodium alginate precursor (1% w/v) from brown algae, Sigma-Aldrich, St. Louis, MO) in phosphate-buffered saline (PBS; Gibco/Life Technologies, Carlsbad, CA) and 100 mM calcium chloride dehydrate (CaCl\(_2\)-2H\(_2\)O; Sigma-Aldrich) in distilled water were used as the ionically crosslinkable hydrogel and cross-linking reagents. Both the sodium alginate precursor and calcium chloride were pre-filtered through a 0.22 \(\mu\)m pore sized filter (Millipore, Billerica, MA). After plasma treatment of the PDMS substrate to create a hydrophilic surface, the hydrogel mixture with single-dispersed cells was coated on the hexagonal pillar structure of the PDMS mold. A controlled volume (7–10 \(\mu\)L) of hydrogel precursors in MIN6 cell suspension (cell seeding density: \(1 \times 10^5\) to \(10 \times 10^5\) cells mL\(^{-1}\)) was introduced as a thin film (50–70 \(\mu\)m thick) via a pipette. The thin film of hydrogel precursors was then cross-linked with a nebulized aerosol of the gelling reagent (calcium chloride) for 5 min using a nebulizer with an ultrasonic transducer (fuming rate: 20 mL min\(^{-1}\)) to develop a smooth surface of the hydrogel constructs. The hydrogel constructs were then submerged in cell culture medium and released from the substrate as floating membrane constructs. Each hydrogel construct was incubated with the culture medium (Dulbecco’s modified Eagle’s medium with 4.5 g L\(^{-1}\) glucose supplemented with 15% fetal bovine serum, 100 mg L\(^{-1}\) penicillin–streptomycin and 71.5 \(\mu\)M 2-mercaptoethanol) for two weeks.

Morphological analysis of fluorescence-stained cell clusters

To analyze the morphological characteristics of cellular clusters, the floating hydrogel membrane constructs including MIN6 clusters were stained with 10 \(\mu\)M CellTrackerTM green CMFDA (Invitrogen, OR). The average diameter and roundness of each stained MIN6 cell cluster were fitted to an ellipse and analyzed by adjusting the images using the particle analyzing method of the ImageJ software (http://rsbweb.nih.gov). To qualitatively examine z-stacked live cell images, live/dead-stained MIN6 cell clusters associating to the hexagonal hydrogel grid structure were visualized by confocal microscopy. Encapsulated or adhered cells were stained with 10 \(\mu\)M calcein AM and 4 \(\mu\)M ethidium homodimer-1 (red) for 30 min. A 3D image was reconstructed from each sequential confocal slice (z-axis interval = 10 \(\mu\)m) via ImageSurfer (http://imagesurfer.cs.unc.edu).

Scanning electron microscopy (SEM)

The cells inside the hydrogel grid structure were fixed with 2.5% glutaraldehyde (Sigma-Aldrich) in deionized water for 1 h and then washed with deionized water. For secondary fixation,\(^5\) they were immersed in 1% osmium tetroxide (Sigma-Aldrich) in deionized water for 1 h. Fixed cells were subsequently dehydrated in a graded ethanol series (25%, 50%, 75%, 95% and 100%). After dehydration, they were immersed in tetrabutyl alcohol (Sigma-Aldrich) for 30 min (three times) at room temperature and frozen at ~70 °C. The cells were completely dried using a critical point dryer (Tousimis, MD) to reduce drying shrinkage and mounted on a specimen stub using graphite paste.\(^24\) The samples were coated with platinum and observed under a field-emission scanning electron microscope (Hitachi, Japan).

Cell proliferative assay

Cell proliferation was quantitatively measured using a tetrazolium salt determined metabolic activity (Dojindo, Japan). The metabolic activity of MIN6 cell clusters was measured using a hydrogel membrane construct, without an extra process for harvest and dissociation of cell clusters. Because cell clusters could not be harvested or dissociated during the cultivation period to investigate the effect of the hydrogel grid structure, the metabolic activity of MIN6 cell clusters was continuously analyzed in the hexagonal hydrogel grid structure during a certain period of time. Due to the small number of cells in a hydrogel membrane construct, it was incubated for 4 h for chemical reaction to take place, and then the colorimetric result was measured. Color changes were assessed using a...
Insulin measurement and glucose-stimulated insulin secretion (GSIS) assay

Insulin was measured from the collected cell culture medium for two weeks. The secreted medium and buffer were collected during the floating period in a static culture plate and then frozen at −80 °C. Insulin secretion measurements were performed on days 3, 6, 9 and 12 using a rat/mouse insulin enzyme-linked immunosorbent assay (ELISA) kit (Millipore, MO). A four-parameter algorithm was used to calibrate curve fitting and for data analysis. Each insulin level per cell was measured and calculated using the relative number of cells. GSIS was measured on the basis of a Krebs Ringer bicarbonate (KRB) buffer calculated using the relative number of cells. GSIS was measured by ELISA. GSIS was described as the magnitude of the change of insulin secretion in high glucose (22.2 mM) buffer with respect to basal insulin levels in low glucose (2.8 mM) buffer.

Results and discussion

Fabrication of the 3D hexagonal hydrogel grid structure

As shown in Fig. 1, a schematic illustration of the hydrogel grid structure with a hexagonal-grid pattern which mimics the size (100–200 μm) of the islets of Langerhans in the pancreas. The hexagonal hydrogel grid structure was successfully constructed on the hexagonal pillar structure of the PDMS mold (Fig. 1A). It can be manipulated in liquid due to the fragility of the biomaterials and a 100 μm-height-membrane type of hydrogel structure suitable for maintaining viable cells. After the cross-linking reaction, the cell-embedded hydrogel grid structure, which has a 2.85 ± 1.49 μm-sized pore (28.9 ± 1.15% porosity), was removed from the PDMS mold (Fig. 1B) and then the floating hydrogel structure was cultured for two weeks (Fig. 1C). During this period, cells were replicated and the aggregated MIN6 cells grew within the empty spaces attached to the hydrogel structure. The MIN6 cells merged and coalesced into a group with a specific morphology in contrast with other cell types. A typical epithelial cell, for example, murine pancreatic ductal adenocarcinoma (mPAC), stretched its body following a hexagonal grid pattern in the hydrogel membrane construct, even though both cells are found in the same organ, the pancreas.

In our previous work,23 a monolayer of PDMS replica was prepared to fabricate grid geometries in the hydrogel membrane constructs. This included a scraping process of excessive hydrogel precursors, which might cause a severe damage to the loaded cells. To achieve spatial uniformity of the grid pattern in a simple manner, a PDMS replica was fabricated via two-step lithography (Fig. 1A and D). The hydrogel precursor was loaded on the replica mold (Fig. 1A and E) that contained a guiding frame (height: 100 μm) and hexagonal pillars for the grid pattern (height: 150 μm) to create an even layer of a hydrogel membrane. The height of the guiding frame was determined from the thickness of the hydrogel membrane construct. The hydrogel was stained with methylene blue (3 mg L⁻¹) to visualize the constructs optically (Fig. 1F). Instead of cells, monodispersed 6 μm-sized polystyrene beads were observed and were evenly distributed within the 3D hydrogel grid structure (Fig. 1G). Both images were a total reversal of hexagonal pillar structures in the PDMS molds. According to the SEM image, the opening parts and precise microstructures of the hexagonal hydrogel grid structure were confirmed (Fig. 1H). Using this approach, a more accessible grid microstructure could be facilely constructed within any mechanical stress towards the encapsulated cells.

Fig. 1 Schematics of fabrication and images of a hexagonal hydrogel grid structure. (A) Schematic illustration of a PDMS mold for a hexagonal hydrogel grid structure and (B, C) the fabricated hexagonal hydrogel grid structure at day 0 and at day 14. (D) Cross-section and (E) top view of the hexagonal pillar pattern (height: 150 μm) and guiding frame (height: 100 μm) on a PDMS mold with hexagonal grid structures. The hexagonal hydrogel grid structure was stained with methylene blue without any particles (F) and (G) with 6 μm polystyrene beads. The hexagonal grid pattern in a hydrogel construct (F, G) has a complete reversal of the PDMS mold (E). (H) The SEM image of hydrogel constructs also showed the hexagonal grid structure. Scale bar = 100 μm.
certain type of design based on an array of hexagons (Fig. 2A). A hexagon is a shape that has a densely packed arrangement with uniform intervals for plane construction as compared with round or other polygons. Although there are lots of geometrical modifications such as the thickness of the membrane, the shape of a cavity or a repeat of a unit pattern, we need only two different factors: the diameter of the inner hexagon for cavity \((R_i)\) and the diameter of the outer hexagon for hydrogel \((R_o)\). We could generate a relatively thin membrane, less than 100 \(\mu m\), which fully overcomes diffusion depth, to accept nutrients into the hydrogel at the vertical direction. Even though cells within the hydrogel were sufficiently saturated with nutrients and oxygen through the upper and bottom sides of the hydrogel membrane, a concentration difference of medium could spatially and temporally occur in the lateral direction due to a complicated micropattern penetrating a whole plane of the hydrogel membrane construct. For example, a close interval between consistent cavities could be favorable for cells to maintain viability and even grow actively in the interior of the hydrogel at the beginning of the culture. Moreover, cells could rapidly grow into a multicellular group at the boundary of cavities, as compared to the interior of the hydrogel due to the cross-linked fibers of the hydrogel which encapsulates cells. However, the excessively dense grid structure could also bring about a weakness of the hydrogel construct and a lack of embedded cells surrounding a cavity. Therefore, biochemical circumstances could be determined in accordance with a combination of various geometric cues in the hydrogel membrane construct.

To geometrically examine the hydrogel membrane construct for generating cell clusters, the inner \((R_i)\) and outer \((R_o)\) diameters in the hydrogel grid structure (Fig. 2C, Grid) were determined to be 100 and 130 \(\mu m\), respectively, with a certain repeated pattern, in consideration of the environment surrounding a cavity (for example, a balance between nutrient diffusion and cell numbers). Total loaded areas were similarly controlled in a hydrogel membrane without any micropattern (Fig. 2B, None). Otherwise, distances between embedded cells could not be adjusted in a hydrogel membrane construct when the equivalent seeding concentration (seeding density: \(5 \times 10^6\) cells mL\(^{-1}\)) was constantly applied. Most of the cells randomly grouped to form an aggregated lump without any pattern in a hydrogel membrane construct. On the other hand, cells seem to have different growth rates in the hexagonal grid pattern depending on the surrounding circumstances, such as medium diffusion, cell–cell distances and surrounding materials. Therefore, MIN6 cell clusters proliferated into a certain size of lumps and fitted to the cavities in the hexagonal hydrogel grid structure. Although smaller clusters or single cells still remained within the hydrogel grid structure, homogenous cellular clusters were strongly promoted by geometric controls, occurring in a combination of biochemical and physiological environments.

Although MIN6 clusters were equally represented by both types of floating membranes as a result of in vitro culture for 13 days, there was a morphologically distinct characteristic of cellular clusters in the hexagonal hydrogel grid structure. The average diameter of MIN6 cell clusters was measured via image analysis of green-fluorescent labeled cellular clusters (Fig. 2D). We selected over a 50 \(\mu m\)-size of clusters to exclude single or nonreplicating cells in the hydrogel membrane construct. The cell clusters found in the hexagonal hydrogel grid structure were significantly different from those encapsulated within the non-patterned hydrogel structure (statistical analysis was conducted using one-way ANOVA, \(^*p \leq 0.05, n = 513\)). Each non- and grid pattern yielded cell clusters with average diameters of 97.3 \(\pm\) 44.5 and 83.6 \(\pm\) 14.2 \(\mu m\), respectively. Although the average diameters of the MIN6 cell clusters were comparable to each other, they were more homogeneous in the hexagonal grid structure than in non-patterns. In addition, regular round units of cell clusters were more frequently (>60% of total units) observed in the hexagonal hydrogel grid structure, when the growing MIN6 cells coalesced into a multi-cellular cluster (Fig. 2E). This implies that multicellular clusters rapidly developed within the geometrically confined hexagon-based grid in the hydrogel membrane construct.

To examine the correlation between different sizes of a cavity \((R_i)\), MIN6 cell clusters were generated using the

Fig. 2 Schematic illustration and demonstration of a hexagonal hydrogel grid structure. (A) Arrangement of the hexagonal pattern has two design factors: a hexagonal array of hydrogel \((R_o)\) and a hexagonal cavity \((R_i)\). (B–E) Demonstration of hydrogel membrane construct-based floating cultured MIN6 cells for 13 days without (none, B) or with (grid, C) the hexagonal grid pattern \((R_i = 100 \ \mu m \ \text{and} \ R_o = 130 \ \mu m\)). (D) Diameters of MIN6 cell clusters in the hydrogel grid structure were significantly different from those in the non-patterned hydrogel constructs (statistical analysis was conducted with one-way ANOVA, \(^*p < 0.05, n = 513\)). (E) Roundness of MIN6 cell clusters, the difference between the maximal and minimal widths of cell clusters, was measured to determine morphological homogeneity of cell clusters \((n = 474)\). Scale bar = 100 \(\mu m\).
hydrogel grid structure, including three different sizes of a hexagonal cavity unit ($R_i = 100, 150$ and $200 \mu m/R_o = 130, 195$ and $260 \mu m$) for 15 days (seeding density: 1×10^7 cells mL$^{-1}$) (Fig. 3). Each condition has an identical ratio of inner size to outer size ($R_i/R_o = 0.77$), which represents an identical design pattern in the hydrogel grid structure. According to the images of cellular clusters at day 15 (Fig. 3A), they have consistently sized-feature in common after the same period of cultivation. Each size of the hydrogel grid structure ($R_i = 100, 150$ and $200 \mu m$) yielded cell clusters with average diameters of $112.28 \pm 23.79, 112.65 \pm 25.67$ and $112.55 \pm 25.86 \mu m$ at day 10, respectively. Their sizes generally increased to $116.27 \pm 23.05, 114.55 \pm 26.06$ and $117.24 \pm 29.70 \mu m$, respectively, at day 15, regardless of the pattern size. On the other hand, morphological homogeneity of MIN6 cell clusters was considerably involved with cavity size due to the confined geometric effect (Fig. 3B). According to the distribution of rounded MIN6 cell clusters, homogeneous rounded clusters were frequently discovered after culturing until sufficiently mature at day 15 in 100 μm-sized cavities. Although MIN6 cell clusters could be theoretically developed in the course of time, however, they would also be large enough to detach from the wall of the hydrogel grid structure. Although this study demonstrates that a slight size variation in the same grid structure does not significantly affect the size of developed clusters, overall, the hexagonal micropattern in a grid structure would be involved in homogeneous formation of cellular clusters following confined cavities of the hydrogel grid structure.

Most of the cavities (over 90% of cavities) were filled with MIN6 cell clusters after the hydrogel membrane construct was floated and cultured for 13 days (Fig. 4A). A closed boundary of MIN6 cell clusters was also identified at the grid cavities in a magnified image (see inset of Fig. 4A). According to the image of a hydrogel grid structure, MIN6 cells not only simply proliferated into lumps but also assembled into the cavity to effectively generate homogeneous multicellular clusters. This process is a natural and spontaneous method to promote homogeneous multicellular clusters through the micro-scaled geometry of the hydrogel scaffold. To determine details of the clusters attaching to the hydrogel grid structure, we investigated the surface of the hexagonal hydrogel grid structure, including fully formed MIN6 cell clusters via SEM (Fig. 4B). Each of the MIN6 cell clusters was attached to the hydrogel and occupied a grid cavity; a magnified image shows tight cell–cell contacts with a smooth surface (see inset of Fig. 4B). Moreover, a fully formed MIN6 cluster was developed to over a 100 μm-sized multicellular cluster, allowing for some shrinkage effects due to the drying process of SEM.

Proliferation of MIN6 cells and viability assessment of MIN6 cell clusters in a floating hexagonal hydrogel grid structure

To reveal the generation of MIN6 cell clusters in the hexagonal hydrogel grid structure during culture period, cells were
observed in a floating hydrogel membrane at day 1, 9 and 13 (Fig. 5A–D). Dispersed single MIN6 cells (5×10^6 cells mL$^{-1}$) were evenly distributed within gelated hydrogels in three dimensions at day 1 (Fig. 5A). Over time, however, cells proliferated and naturally constructed small sized multicellular clusters within 9 days (Fig. 5B). Very interestingly, over a-week-culture period, cells proliferated into a certain size of tight clusters and occupied each cavity of the floating hydrogel membrane construct. Finally, a multicellular cluster was generated in a certain hexagonal hydrogel grid structure for 14 days (Fig. 5C). Moreover, the cytoplasm was also stained by green fluorescence at day 13 to examine the morphology of cellular clusters in stereoscopic view (Fig. 5D). Based on the fluorescence image, most of the cells occupied the cavities and attached to the hydrogel grid structure; however, some of the smaller cells or single cells also still existed within the hydrogel membrane construct. Every cell seems to have a different proliferative ability because of surrounding circumstances.

To quantitatively measure the growth and proliferation of MIN6 cells in the hexagonal hydrogel grid structure, metabolic activity of cells was assessed during the floating culture period (Fig. 5E). According to the daily assessment of MIN6 cells, growth of encapsulated MIN6 cells in the hexagonal hydrogel grid structure (Grid) was slowly increased compared to that in the conventional 2D culture condition (Ctrl) (seeding density: 1×10^7 cells mL$^{-1}$). The cellular growth rate in the control was universally faster than that in the 3D hydrogel condition. However, a different cell-seeding density would improve their proliferation in the hydrogel condition. It determines the distances between cells and the cell–cell interactions necessary for appropriate cell–cell contact. In our condition, grid cavities also promoted close distances between cells to induce cell–cell interactions during the total culture period. However, we also need to find out if seeding density would affect how fast the cells can grow in the hydrogel grid structure via examining cellular metabolic activity using a tetrazolium salt for a week (Fig. 5F). The cellular growth rate in a conventional 2D culture plate was universally faster than that in the 3D hydrogel condition. However, cells rapidly grew and generated multicellular clusters of the hydrogel grid structure with a large seeding density (8×10^6 cells mL$^{-1}$). This implies that a large number of encapsulated MIN6 cells will give a synergistic result in generating cell clusters that localize more rapidly to the hexagonal hydrogel grid structure with certain sizes of cellular units. In addition, a relatively small number of cells (1×10^6 cells mL$^{-1}$) would possibly generate multicellular clusters for a longer period of time (over 2 weeks), in contrast with a week-limited conventional culture condition. Consequently, culturing for longer periods likely facilitates generation of MIN6 cell clusters through the encapsulation of a limited number of individual cells.

A 3D image of live/dead-stained MIN6 multicellular clusters was reconstructed to qualitatively analyze cell viability (Fig. 5G) including representative 10 μm-height series images (see insets of Fig. 5G). After 13 days of floating culture, fully generated cell clusters was shown to be highly viable, attaching to the grid cavities, and they developed regular distribution patterns following the confined geometry. A few single cells or smaller clusters of which the size was not enough to fill a grid cavity still remained highly viable inside the hydrogel membrane construct. After some of the full-sized cell clusters detached from the hydrogel membrane construct, the remaining viable cells could grow and generate another cluster at an adjacent vacancy. Therefore, we could continually obtain size-controlled multicellular clusters in a single hydrogel membrane construct until the embedded cells were exhausted.

Fig. 5 Viability and insulin producing ability of MIN6 cell clusters within the hexagonal hydrogel grid structure. Embedded cells at day 1 (A) proliferated and agglomerated together to form larger clusters in the hexagonal cavity at day 9 (B) and day 13 (C). Fluorescence images of CellTracker™ stained cells were obtained on culture day 13 (D). (E, F) Proliferation of MIN6 cells was measured by metabolic activities of cells compared to a 2D conventional dish culture condition (ctrl) for 14 days (E) and with various seeding densities in the hexagonal hydrogel grid structure (F). (G) Live/dead-stained confocal microscopy images. 3D reconstruction of MIN6 cell clusters after 10 days in floating culture in the hexagonal hydrogel grid structure. Green (calcein-AM): live cell; red (ethidium homodimer-1): dead cell. Representative images of the six sequential confocal slices ($Z = 40, 60$ and $80 \mu m$). Scale bar = 100 μm.
Insulin secretion of generated MIN6 cell clusters in a floating hexagonal hydrogel grid structure

We also investigated both insulin level and cell number increase for longer periods of time in high-glucose medium with or without hexagon-grid geometry as regards the biochemical effect (Fig. 6A). Metabolic activity was also examined on days 3, 6, 9 and 12 after dispersed MIN6 cells were encapsulated inside the hydrogel grid structure. The cell number was normalized to the standard linear fit curve of the counted number of MIN6 cells. Based on the cell number, insulin secretion per cell was measured. It was approximately equivalent at the beginning of the culture period; however, as culture progressed, the insulin-secrection level per cell in the hexagon-hydrogel grid structure (Grid) was consistently higher than that in the hydrogel structure without any pattern (None). Moreover, cells at the center of the clusters, necrotic regions, could be damaged at the randomly generated multicellular clusters in the hydrogel structure without any pattern, which reduces the metabolic activity of cells at day 12. Even though the absolute number of cells was smaller in the hydrogel grid structure, both cell number and insulin secretion in the hydrogel grid structure increased during the cultivation period. Therefore, the function of MIN6 cells, especially insulin secretion, seems to have high relevance to the regular formation of multicellular clusters through controlling their surrounding geometrical environment.

To determine the detailed function of MIN6 cell clusters in the hexagonal hydrogel grid structure, GSIS was investigated based on KRB buffer with low glucose (2.8 mM). Fold change was dramatically increased in the hexagonal hydrogel grid compared to that in a 2D condition (Ctrl) when KRB buffer solution containing high glucose (22.2 mM) was applied (Fig. 6B, statistical analysis was conducted using Student’s t test, *p < 0.001, n = 3). That is, a multicellular clustered form of MIN6 cells could give a functional benefit compared to the conventional culture condition. Besides, the actual insulin level in the hexagonal hydrogel grid structure was 0.1774 ± 0.0158 (ng mL⁻¹) in low glucose buffer and 1.2846 ± 0.0593 (ng mL⁻¹) in high glucose buffer. On the other hand, the insulin level in Ctrl was 0.3520 ± 0.0072 (ng mL⁻¹) in low glucose buffer (basal) and 1.3138 ± 0.0115 (ng mL⁻¹) in high glucose buffer. According to the actual insulin level in both ctrl and hydrogel grid structures, their insulin levels were similar to each other at the high glucose buffer condition. However, the basal level of secreted insulin from the hexagonal hydrogel grid structure was significantly less than that in Ctrl. When the glucose affected to the MIN6 cells, permeated glucose in the multicellular cluster would be distinguished from reaching to stretched features in a conventional culture dish.

Conclusions

We demonstrated a geometric effect of the formation of homogeneous MIN6 cells clusters via fabrication of a mesoscopic hydrogel grid structure. By examining the morphology, viability and insulin secretion of merged MIN6 cells in a confined cavity of a grid structure, certain sizes of cell clusters were homogeneously generated and spontaneously occupied the hexagonal cavities of the hydrogel membrane constructs during culture. The grid geometry in the hydrogel membrane construct facilitated generation of multicellular clusters with a limited number of seeding densities. The MIN6 cellular clusters were successfully developed without any modification of hydrogel conjugation and additional ECM. Furthermore, GSIS results of MIN6 cell clusters in the hexagonal hydrogel grid structure showed a two-fold increase compared with the conventional 2D culture of MIN6 cells. Consequently, facultative in vitro β-cell proliferation and maintenance as a cell clustering form through the geometric control of hydrogel scaffolds can be achieved using a hexagon-grid cell-encapsulated hydrogel membrane construct. Therefore, it could be applied not only to transplantation of reconstructed tissues but also to the development of biofunctional assays based on modular tissue constructs. Use of appropriate micropatterns may facilitate β-cell culture in vitro, which holds promise for development of an in-depth biofunctional assay for scientific research and development of novel drugs for a variety of metabolic diseases.

Acknowledgements

This research was supported by the National Leading Research Laboratory Program (grant NRF-2013R1A2A1A05006378) through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning. The authors also acknowledge the Cooperative Research Program...
for Agriculture Science and Technology Development (grant PJ009842) supported by the Rural Development Administration of Korea, and the Korean Health Technology R&D Project (grant A112024) of the Ministry of Health and Welfare of Korea.

Notes and references